

Structural Calculations for:

Dillon-Naftolin Residence

4524 90th Ave SE Mercer Island, WA 98040

Prepared for:Herschel L. D. Parnes, ArchitectJob #:00059-2022-01Date:9/30/2022

SEATTLE2124 Third Ave, Suite 100, Seattle, WA 98121TACOMA934 Broadway, Suite 100, Tacoma, WA 98402

ENGINEERING

EBG DESIGN 1

SHEET

2124 Third Ave, Suite 100, Seattle, WA 98121 934 Broadway, Suite 100, Tacoma, WA 98402 SEATTLE TACOMA Estengineers.com

SCE 7-16 Seisr	nic Analysis	6	Equivalen	t Lateral Fo	rce Proced	ure						
eismic Force R	esisting Sy	stem Per	System	Bearing W	all Systems	5						
				Light-fram	e (wood) W	alls Sheath	ed with V	Vood Structu	ıral Panels R	ated for Sh	ear Resistar	ice
			Type:	J								
Soismic [Design Cat		D	1					Section 12	813 Evcen	tions	
Ris	k Category		U	I, II, or III, or IV per Table 1.5-1				Regular St		10115	Yes	
	Site Class	D (D	efault)	 Assumed default soil properties, per 11.4.3. 			3.	≤ 5 Stories	above grad	de	Yes	
Diaphragn	n Flexibility	Fle	xible						T ≤ 0.5s			Yes
	,	. 10							ρ = 1.0			No
Ss	1.427	g	2% in 50 y	r, Latitude	& Longitud	e lookup			Not Site Cl	ass E or F		Yes
S ₁	0.496	g	2% in 50 y	r, Latitude	& Longitud	e lookup			Risk Categ	ory I or II		Yes
R	6.50		1						If all excep	tions are m	et, S _{DS} may	be taken a
C _d	4.0		1						1, but not le	ess than 0.7	*(Calculated	I S _{DS})
Ω₀	2.5]									
l _e	1.00		Table 1.5-2	2					$T_a = 0$	$L_t h_n^x$	Eq. 12	.8.7
h _n	9.0	ft							, u		•	
Ct	0.02		Table 12.8	8-2					Suc =	F Sc	Fa 11	4-1
х	0.75		Table 12.8	8-2	Building F	Period Per			S -		Eq. 11	.+ <u>+</u> 1.2
Ta	0.10	sec		1	Alternate	Analysis			$S_{M1} - C_{M1} - C$	$r_{v}s_{1}$	Ly. 11	.4-2
T	0.10	sec	Eq. 12.8-7		T (sec)				$S_{DS} =$	$-7_{3}S_{MS}$	Eq. 11	.4-5
I ₀	0.10	sec	_						$S_{D1} =$	$2/_{3}S_{M1}$	Eq. 11	.4-4
т Т	0.52	sec	_									
	6.00	sec	T 1 1 44 4		Per Geote	ch Report			$C_{\rm S} = \frac{1}{2}$	S _{DS}	Eq. 12	.8-2
Г _а Е	1.20		Table 11.4-	-1						R/I _e) Sp1		
Γ _V	1.80	~	Table 11.4-	-2	Γ _V				$C_S = \frac{1}{7}$	(R/I_{e})	Eq. 12	.8-3
S _{MS}	1.71	y a	Eq. 11.4-1						C -	$S_{D1}T_L$	Ea 12	Q_/
S _{M1}	11/2	y a	Eq. 11.4-2						$C_S = \frac{1}{7}$	$^{2}(R/I_{e})$	LY. 12	.0-4
S _{DS}	0.507	y a	Eq. 11.4-5						$C_S \ge 0$	0.044 <i>S</i> _{DS}	<i>Ie</i> Eq. 12	.8-5
ODI	0.557	y	LQ. 11.4-4						$C_S \ge 0$	0.01	Eq. 12	.8-5
	0.176	Controls	Fa 12 8-2						$C_{\alpha} > 0$	$5 - \frac{S_1}{S_1}$	Fa 12	8-6
C	0.883		Eq. 12.8-3	need not e	xceed, T <	T,			05 - 0	(R/I_e)	-92	.0 0
05	0.010		Ea. 12.8-5	or 12.8-6 m	ninimum	-	Γ	0	$1 k \sqrt{n}$	1 k		
C _s , design	0.176		Section 11.	.4.8 Excepti	ion 2 Applie	ed		$\mathcal{L}_{VX} = W$	$\sum_{x=1}^{n_{x}} n_{x}^{n_{x}} / \sum_{i=1}^{n_{x}} n_{x}^{n_{x}$	$_1 w_x n_i^n$	Eq. 12.	8-12
			-					_*				
Bldg. Weight	12.2	k	-					$F_{nr} = \sum_{i}^{r}$	$\frac{1}{2}x^{F_i}/\sum_{n}$	Wnr	Eg. 12.	10-1
			1						$2 \sum_{i=x}^{n}$	wi pr	Fa 12	10.2
$V = C_S W$	2.1	k	Eq. 12.8-1,	Strength Le	evel Base S	ihear		$F_{px} \ge 0.2S_{DS}I_eW_{px}$ Eq. 12.10-2			10-2	
$V = C_{Sasd}W$	1.5	k	Eq. 12.8-1	ASD Base S	Shear			$F_{px} \leq 0.$	$4S_{DS}I_ew_p$	x	Eq. 12.	10-3
			-				L					
ertical Distrib	ution	Strength	<u>ρ=</u>	1.3	k=	1.000						
						Story Shea	r			Diaphragn	n	
Level	h _× (ft)	W _x (k)	h _x ^k (ft)	W _x h _x ^k		Strength			Forc	e (ρ not inc	luded)	
					C _{vx} (%)	F _x (k)	SV (k)	F _{px,calc}	F _{px,min}	F _{px,max}	F _{px,design}	$\gamma = F_{px}/F_x$
											1	
								1	1			1
												1
				1	I			1	1	1	1	1

2.1

2.8

5.6

2.8

6	SF		\L IG	Dillon-Naft Seismic Cr	olin Reside iteria	ence			
	Σ		12.2		110		2.8		
R	oof	9.0	12.2	9.0	110	1.000	2.8	2.8	

6/30/2022 DATE PROJ. # EBG DESIGN SHEET 2

1.00

Wind Design - MWFRS

ASCE 7 Chapter 27 - Directional Procedure

Design Method	Strength

Wind Coefficients

wind Coefficier	115	
Exposure	В	
V=	100	mph
K _d =	0.85	Table 26.6-1
K _h =	0.57	Table 26.10-1
K _e =	0.99	Table 26.9-1
G=	0.85	26.9.4

Transverse Wind Pressures

L/B = 0.58 h/L = 0.47

Pressure Coefficients from Figure 27.3-1:				
Bldg Face C _p				
Windward Wall	0.8			
Leeward Wall	-0.50			
Windward Roof	-0.5 / -0.05			
Leeward Roof	-0.56			

Location and Building Dimensions

Calculate Kzt?	Yes	
Kzt	1.48	
Roof Type	Gahle	
Roof Angle - Transverse Dir	18	degrees
Roof Angle - Long Dir	0	degrees
Ground to top of roof	11	ft
Bot of roof to top of roof	5	ft
Mean Roof Height, h	8.5	ft
Short Plan Dimension	18	ft
Long Plan Dimension	31	ft
Parapet ?	No	
Ground to top of parapet		ft
Average Parapet Height		ft
Ht of 2nd Level Above Grade	0	ft

Velocity Pressure at Mean	10.2	nof
Roof Height, q _h =	10.3	psi

Wall Pressures (Unfactored):

Wall Pressures (Unfactored):				Strength
Ht	Kz	qz	P _{ww walls}	Plwwalls	P _{walls} (psf)
0-15	0.57	18.17	12.35	7.79	20.
15-20	0.62	19.76	13.44	7.79	21.3
20-25	0.66	21.04	14.31	7.79	22.
25-30	0.7	22.31	15.17	7.79	23.0
30-40	0.76	24.22	16.47	7.79	24.
41-50	0.81	25.82	17.56	7.79	25.
51-60	0.85	27.09	18.42	7.79	26.3
61-70	0.89	28.37	19.29	7.79	27.
71-80	0.93	29.64	20.16	7.79	27.9
81-90	0.95	30.28	20.59	7.79	28.4
91-100	0.99	31.56	21.46	7.79	29.3

Roof Pressures (Unfactored)

Roof Press	Strength		
Winc	lward	Looward	Horiz Proj
Max Min		Leeward	(psf)
-0.8	-7.9	-8.7	8.00

2124 Third Ave, Suite 100, Seattle, WA 98121 1 0 206.443.6272 934 Broadway, Suite 100, Tacoma, WA 98402 1 0 253.284.9470 SEATTLE TACOMA

SWENSON SAY FAGÉT

Longitudinal Wind Pressures

L/B = 1.72 h/L = 0.27

Pressure Coefficients from Figure 27.4-1:

Bldg Face	Cp
Windward Wall	0.8
Leeward Wall	-0.36
Windward Roof	-0.9 / -0.18
Leeward Roof	-0.48

Wall Pressures (Unfactored):				Strength
Ht	Kz	q _z	$P_{ww walls}$	P _{lwwalls}	P _{walls} (psf)
0-15	0.57	18.17	12.35	5.54	17.89
15-20	0.62	19.76	13.44	5.54	18.97
20-25	0.66	21.04	14.31	5.54	19.84
25-30	0.7	22.31	15.17	5.54	20.71
30-40	0.76	24.22	16.47	5.54	22.01
41-50	0.81	25.82	17.56	5.54	23.09
51-60	0.85	27.09	18.42	5.54	23.96
61-70	0.89	28.37	19.29	5.54	24.83
71-80	0.93	29.64	20.16	5.54	25.69
81-90	0.96	30.60	20.81	5.54	26.34
91-100	0.99	31.56	21.46	5.54	26.99

Roof Pressu	Strength		
Wind	lward	Looward	Horiz Proj
Max	Max Min		(psf)
-2.8	-14.0	-7.5	8.00

Roof Pressu	Strength		
Wind	lward	Ho	Horiz Proj
Max	Min	Leewaru	(psf)
-2.8	-14.0	-7.5	8.00

Dillon-Naftolin Residence

Wind Criteria

6/30/2022 DATE PROJ. # DESIGN EBG

3 SHEET

SHEET

Shear Wall Force Distribution

Governing Ultimate Story Shears:

	N-S Dir	rection	E-W Direction			
Level	(k)	Loading	(k)	Loading		
Roof	5.7	Wind	5.3	Wind		

ASD Story Shears:

	N-S (k)	E-W (k)				
Roof	3.4	3.2				

Plywood Shear Wall Capacities:

Edgo Nailing	Capacity (lbs/ft)				
Euge Naming	Seismic	Wind			
8d @ 6	260	365			
8d @ 4	380	532			
8d @ 3	490	685			
8d @ 2	640	895			

X-Direction Wall Shear Distribution (See Shear Wall Key Plan)

	Wall Line	Trib Length (ft)	Shear (k)	Wall Length (ft)	Unit Shear (Ibs/ft)	Wall Type
	x1	9	1.6	11	145	W6
	x2	9	1.6	9	177	W6
Low Roof						

Y-Direction Wall Shear Distribution (See Shear Wall Key Plan)

	Wall Line	Trib Length (ft)	Shear (k)	Wall Length (ft)	Unit Shear (Ibs/ft)	Wall Type
	y1 v2	18 18	1.7 1 7	13.5 28	127 61	W6 W6
Low Roof	y_	10		20	0.	

Shearwall Holdown Design

Holdown Capacities	
HDU5	5645 lbs
HDU2	3075 lbs
(2)cs16	3410 lbs
MST72	6730 lbs

Wall ID	Supporting	Direction	Seg	ment lengt	ths	Shear	Hwall	DL	T1	T2	Т3	Holdown
			1	2	3	lbs/ft	(ft)	(lbs/ft)	(lbs)	(lbs)	(lbs)	
x1	Roof	х	5.5	5.5		145	9	132	1087	1087	0	HDU2
x2	Roof	х	9			177	9	132	1237	0	0	HDU2
y1	Roof	У	8.5	5		127	9	132	806	945	0	HDU2
y2	Roof	У	18	10		61	9	132	0	153	0	HDU2

PASSED

Crawlspace, Crawlspace Joist

1 piece(s) 2 x 8 DF No.1 @ 16" OC \mathbf{Y} increased to 2x10 to match (E)

Overall Length: 9 OK structurally

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	325 @ 2 1/2"	2109 (2.25")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	270 @ 10 3/4"	1305	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	728 @ 4' 9 1/2"	1511	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.105 @ 4' 9 1/2"	0.229	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.136 @ 4' 9 1/2"	0.458	Passed (L/809)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	77	256	333	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	77	256	333	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' 5" o/c					
Bottom Edge (Lu)	9' 5" o/c					
-Maximum allowable brasing intervals based on applied land						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 7"	16"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser racii umber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Evin Gibson	
swenson say faget	
(206) 443-6212	
egibson@ssfengineers.com	

Crawlspace, Crawlspace Drop Beam 1 piece(s) 4 x 10 DF No.1

Overall Length: 9' 1"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2036 @ 2"	7656 (3.50")	Passed (27%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1559 @ 1' 3/4"	3885	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	4289 @ 4' 6 1/2"	4991	Passed (86%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.108 @ 4' 6 1/2"	0.292	Passed (L/976)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.151 @ 4' 6 1/2"	0.438	Passed (L/697)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (Ibs)					
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories	
1 - Stud wall - DF	3.50"	3.50"	1.50"	582	1453	2035	Blocking	
2 - Stud wall - DF	3.50"	3.50"	1.50"	582	1453	2035	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 1" o/c	
Bottom Edge (Lu)	9' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 1"	N/A	8.2		
1 - Uniform (PSF)	0 to 9' 1" (Front)	8'	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Evin Gibson swenson say faget (206) 443-6212 egibson@ssfengineers.com	

Deck Joist 1 piece(s) 2 x 8 HF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	402 @ 2 1/2"	1367 (2.25")	Passed (29%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	326 @ 10 3/4"	1088	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	800 @ 4' 3 1/2"	1284	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.129 @ 4' 3 1/2"	0.204	Passed (L/758)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.155 @ 4' 3 1/2"	0.408	Passed (L/632)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (Ibs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	69	343	412	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	69	343	412	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 5" o/c				
Bottom Edge (Lu)	8' 5" o/c				
-Maximum allowable brasing intervals based on applied land					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 7"	16"	12.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Evin Gibson	
swenson say faget	
(206) 443-6212	
egibson@ssfengineers.com	

Crawlspace, Deck Beam 1 piece(s) 4 x 8 HF No.2

Overall Length: 6' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	938 @ 2"	3189 (2.25")	Passed (29%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	705 @ 10 3/4"	2538	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1438 @ 3' 3 1/2"	2823	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.057 @ 3' 3 1/2"	0.156	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.070 @ 3' 3 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	178	790	968	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.50"	178	790	968	1 1/4" Rim Board
 Rim Board is assumed to carry all loads applie 	ad directly abo	we it hynassi	na the memb	er heina desia	ined		

ned to carry all loads applied directly above it, bypassing the member being desi

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 5" o/c	
Bottom Edge (Lu)	6' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 6' 5 3/4"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 7" (Front)	4'	12.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Evin Gibson swenson say faget (206) 443-6212 egibson@ssfengineers.com	

Roof, Typ Header 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	862 @ 0	2813 (1.50")	Passed (31%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	566 @ 8 3/4"	3002	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	916 @ 2' 1 1/2"	3022	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.018 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	330	531	861	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	330	531	861	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 3" o/c	
Bottom Edge (Lu)	4' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	5.5		
1 - Uniform (PSF)	0 to 4' 3"	10'	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Evin Gibson swenson say faget (206) 443-6212 egibson@ssfengineers.com	

Roof, Header @ Sliding Glass Door 1 piece(s) 4 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1270 @ 0	3281 (1.50")	Passed (39%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	974 @ 8 3/4"	3502	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1985 @ 3' 1 1/2"	3820	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.045 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.074 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	142 @ 6' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	123 @ 5"	4872	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	222 @ mid-span	2694	Passed (8%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.025 @ mid-span	0.625	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.38	1.00	Passed (38%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	489	781	1270	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	489	781	1270	None

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	6' 3" o/c					
Bottom Edge (Lu)	6' 3" o/c					
Maximum allowable brasing intervals based on applied lead						

Maximum allowable bracing intervals based on applied load.

Lateral Connections							
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing	
Left	2X	Douglas Fir-Larch	Nails	8d x 2.5" Box (Toe)	2		
Right	2X	Douglas Fir-Larch	Nails	8d x 2.5" Box (Toe)	2		

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 3"	10'	15.0	25.0	Default Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	19.0	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (100), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Evin Gibson swenson say faget (206) 443-6212 egibson@ssfengineers.com		Weyerhaeuser

Footing De	<u>esign</u>						P _{DL+LL}		
Based on ACI 318-14, IBC 2018, ASCE 7-16									
Footing Type= A Crawlspace Footing									
Allowable Soil	Pressure= f'c=	1500 2500	PSF psi		t		/ 	W	
Footing Criteria	a								
В	W	t	P _{DL}	P _{LL}	Col Dim	R		nt	
(<u>ft</u>)	(ft) 2.5	(in) 12	(<u>K)</u>	<u>(k)</u> 3	(in) 3.5	(<u>)</u>	
2.5	2.5	12	1.2	5	5.5		0.0		
Soil Pressure C	heck								
Pressure =	0.67	KSF	<= Allowable	e, OK					
One-Way Shear	r Check								
as	Trib Area	d	Vu	ΦVn					
(PSF)	(SF)	(in)	(k)	(k)					
1.00	1.25	9	1.25	20.25	ΦVn > Vu	ı, OK			
Two-Way Shea	r Check								
<u>Trib Area</u>	<u>Vu</u>	<u>bo</u>	<u>B</u>	<u>bo/d</u>	as	Vc/(f'cbod)	<u>ΦVc</u>		
(SF)	(k)	(in)					(k)		
5.16	5.16	50	0.291667	5.56	40	4	67.5	ΦVn > Vu, OK	
Reinforcement	Check								
<u>Mu</u>	<u>Rn</u>	<u>p</u>	<u>pgross</u>	<u>pmin</u>	<u>Ast reqd</u>	<u>Use Ast</u>			
(k-ft)	(psi)				(in ²)	(in ²)			
1.52	8.35	0.00014	0.0001	0.0018	0.65	0.8	Ast>Ast Re	eq'd, OK	
Concrete Strair	ı								
<u>a</u>	<u>c</u>	<u>Et</u>							
0.753	0.886	0.027	>.004, OK						

Design Summary

Soil Pressure	OK
One-Way Shear	OK
Two-Way Shear	OK
Reinforcement	OK
Concrete Strain	OK